适用于基线访谈数据的自然语音算法可以预测哪些患者将对psilocybin响应抗治疗的抑郁症。
摘要来源:
j j影响疾病。 2018 04 1; 230:84-86。 PMID: 29407543“> 29407543 Slezak, Philip Ashton, Lily Fitzgerald, Jack Stroud, David J Nutt, Robin L Carhart-Harris
Article Affiliation:Facundo Carrillo
Abstract:BACKGROUND: Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis在精神病学中。在这里,我们使用了应用于自然语音的机器学习算法来询问psilocybin之前测量的语言属性是否可以预测哪些患者的有效性和为此不会。
方法: 进行了基线自传记忆访谈和转录。耐药性抑郁症患者相距7天,接受了2剂psilocybin,10mg和25mg。在所有给药之前,之中和之后,提供了心理支持。将定量语音测量方法应用于来自17名患者和18名未经治疗的年龄匹配的健康对照受试者的访谈数据。机器学习算法用于对照组和患者进行分类并预测治疗反应。
结果: 机器学习成功地将抑郁症分化为与健康对照者的抑郁症,并从健康对照组中识别出与非静态对照者的识别,并确定了85%的精确度(75%)精确)。
结论: 自动自然语言分析is was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.
LIMITATIONS: The sample size was small and replication is required to strengthen inferences on these results.